Fomalhaut’s Debris Disk and Planet: Constraining the Mass of Fomalhaut B from Disk Morphology

نویسنده

  • E. Chiang
چکیده

Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut’s debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. We find that to not disrupt the belt, Fom b must have a massMpl < 3MJ. Previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet’s chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of ∼100 Myr, and model them separately from their dust grain progeny; the latter’s orbits are strongly affected by radiation pressure and their lifetimes are limited to ∼0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Preliminary analysis of Fom b’s space velocity does not bear this out. The disagreement might be resolved by having additional perturbers in the Fomalhaut system, for which there is independent evidence from the star’s anomalous Hipparcos acceleration. Our upper mass limit of 3MJ for Fom b is not affected by these considerations. The belt contains at least 3M⊕ of solids that are grinding down to dust. Such a large mass in solids is consistent with Fom b having formed in situ. Subject headings: stars: planetary systems — stars: circumstellar matter — planetary systems: protoplanetary disks — celestial mechanics — stars: individual (Fomalhaut)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collisional Processes in Extrasolar Planetesimal Disks — Dust Clumps in Fomalhaut’s Debris Disk

This paper presents a model for the outcome of collisions between planetesimals in a debris disk and assesses the impact of collisional processes on the structure and size distribution of the disk. The model is presented by its application to Fomalhaut’s collisionally replenished dust disk; a recent 450 μm image of this disk shows a clump embedded within it with a flux ∼ 5 per cent of the total...

متن کامل

Did Fomalhaut, Hr 8799, and Hl Tauri Form Planets via the Gravitational Instability? Placing Limits on the Required Disk Masses

Disk fragmentation resulting from the gravitational instability has been proposed as an efficient mechanism for forming giant planets. We use the planet Fomalhaut b, the triple-planetary system HR 8799, and the potential protoplanet associated with HL Tau to test the viability of this mechanism. We choose the above systems since they harbor planets with masses and orbital characteristics favore...

متن کامل

Predictions for a Planet Just inside Fomalhaut’s Eccentric Ring

We propose that the eccentricity and sharpness of the edge of Fomalhaut’s disk are due to a planet just interior to the ring edge. The collision timescale consistent with the disk opacity is long enough that spiral density waves cannot be driven near the planet. The ring edge is likely to be located at the boundary of a chaotic zone in the corotation region of the planet. We find that this zone...

متن کامل

An interferometric study of the Fomalhaut inner debris disk

Context. Debris disks are thought to be extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU comparable to the Edgeworth-Kuiper belt, as well as evidence of a warm dust component, unresolved by singledish telescopes, which is suspected of being a bright analog to the solar system’s zodiacal dust. Aims. Interferometric observations ob...

متن کامل

Optical images of an exosolar planet 25 light-years from Earth.

Fomalhaut, a bright star 7.7 parsecs (25 light-years) from Earth, harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. Fomalhaut b lies about 119 astronomical units (AU) from the star and 18 AU of the dust belt, matching predictions of its location. Hubble Space T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009